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Abstract-We obtain the equations of a two-dimensional eighth-order theory for the transverse
bending of transversely isotropic plates, through use of a variational equation for displacements and
transverse stresses. We show that, for sufficiently thin plates, the solution involves an equation of
the fourth order for an interior solution contribution, and two equations of the second order for
edge zone solution contributions. One of these accounts for transverse shear stress effects, in nearly
the same manner as this effect occurs in the sixth-order theory, and the other accounts for transverse
normal stress effects which are neglected in the sixth-order theory.

INTRODUCTION

A recent concern with an eighth-order theory for homogeneous isotropic plates based on
displacement approximations Ux = z4>x, uy= z4>y, Uz = w+z2v by Li and Babuska (1992)
has suggested the following alternate formulation of an eighth-order theory based on
approximations which are in part of the displacement type and in part of the stress
type. This in expectation that thereby the results should approximate more closely the
consequences of a three-dimensional analysis. The developments which follow are based
on a reduction of the equations of a twelfth-order theory which has previously been
established through use of a variational equation for displacement and transverse stresses
(Reissner, 1991).

Our main interest in what follows is to obtain transformations of the equilibrium and
stress displacement equations of the eighth-order theory which show the separation between
interior and edge zone solution contributions as well as the distinction between a transverse
shear stress boundary layer and a transverse normal stress boundary layer with the latter
being a consequence of the step from sixth-order theory (Reissner, 1944) to the present
eighth-order theory.

A specialization of the equations in this paper to the case of homogeneous plates
shows, in particular, the dependence of the widths of the two boundary layers on the ratio
of the midplane Young's modulus E to the transverse shear modulus G, and on the ratio
of G to the transverse Young's modulus E., respectively.

As an example of application we consider the stress boundary value problem for a
semi-infinite plate, in analogy to the corresponding simpler sixth-order analysis.

In an Appendix, we state the associated two-dimensional variational equation which
would have to be used in connection with finite element implementations of the present
system of plate equations.

THE THREE-DIMENSIONAL PROBLEM AND THE EQUATIONS OF AN EIGHTH-ORDER
TWO-DIMENSIONAL THEORY

The results which follow are based on the conventional equilibrium equations for stress
in conjunction with constitutive equations of the form
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t xy
ux.y+uY•x = 2(I+v)E'

t xz
ux,z+uz,x = G'

rTy- VrTx VzrTz
Uy•y = E - jF:E;'

t yz
uy,z+uz,y = G'

(1)

(2)

(3)

with E, v, En Vz and G as given even functions of z, and with surface conditions
rTz = ± 1/2q(x,y), t xz = t yz = 0 for Z = ±c.

To reduce this three-dimensional problem to a two-dimensional eighth-order problem
we use the variational equation for displacements and transverse stresses in Reissner (1985),
in conjunction with midplane parallel displacement approximations:

Ux = ztPAx,y), uy = ztPy(x,y)

and midplane perpendicular stress approximations:

(4)

(5)

(6)

The stress approximations (5) and (6) satisfy the boundary conditions for z = ±c, as well
as the transverse equilibrium equation txz.x+tyz.y+rTz.z = O.

The function of z in the S-terms in (5) is the lowest even degree polynomial with the
property that these terms do not make a contribution to the transverse shear stress resultants.

The introduction of (4)-(6) into the indicated variational equation leads to the
following system of two-dimensional plate equations:

(7)

(8)

(9)

(10)

(11)

v = ...•.1' , (12)

(13)

In the derivation of the system (7)-(13) there is no reference to the z-dependence of
the midplane parallel components of stress and of the midplane perpendicular component
of displacement. Equations (9) and (10) serve as defining relations for the stress couples
tc (rTx, rTy, txy)z dz, and Uzenters in the results only by way of the two weighted averages
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3 fC (Z2) 1 fC ( Z2 Z4)w=-4 1-2" uzdz, v=-S 1-62"+5 4 uzdz.
c -c C C -c C C
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(14)

The constitutive coefficients in (9)-(13) are, in accordance with the results in Reissner
(1991), and with some suitable change of notation

f
c E fC vE

D = 1- 2 Z2 dz, D, = 1- 2 Z2 dz,
-c v -c V

1 fC v ~ (z Z3 ZS)A T =- _z_ - --2]+5 zdz,
S -c 1-v Ez C C C

1 fC ( 2v; ) (z Z3 ZS)2 dzCT =- 1--- --2]+5 -,
64 -c I-v C C c Ez

(15)

(16a)

(16b)

(17a)

(17b)

(17c)

(lSa)

(lSb)

The eighth-order system (7)-(13) reduces to a version of sixth-order shear deformable
plate theory upon setting Sx = Sy = T = 0, and AT = BR = Bs = CT= Cq= O.

Among possible boundary conditions for the above problem may be noted, in particu­
lar, the system of four stress conditions M nn = Mnn, M ns = Mns, Qn = Qn, Sn = Sn and the
system of four displacement conditions cPn = cPn, cPs = cPs> w = w, v = v.

A REDUCTION OF THE EIGHTH-ORDER SYSTEM TO TWO SECOND ORDER AND ONE
FOURTH ORDER DIFFERENTIAL EQUATIONS

The first step in this reduction involves the introduction of (9) and (10) into (7). The
result can be written in the form

where

Qx = D<I>,x+!{D-D,)'P,y+AT~x+Aqq,x,

Qy = D<I>,y-!{D-D,)'P,x+ATT,y+Aqq,y,

(19a)

(19b)

(20)

The introduction of (19a, b) into the first relation in (8) gives, as an intermediate result
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DV2<1>+ATV 2T = -q-AqV 2q. (21)

As a second intermediate result we deduce, by means of an introduction of (13) into
a suitably differentiated version of (12), in conjunction with (8)

(22)

Next, the elimination of wand v in (II) and (12) by cross differentiation and the
observation of (19) gives as a differential equation for 'I'

(
m)D-Dv 2

BQ - B
s

-2- V 'I' = '1'. (23)

The three equations (21)-(23) for <1>, Tand 'I' are complemented by a fourth equation
involving w, upon deducing from (II), in conjunction with (8), that

(24)

Remarkably, the second order equation (23) for 'I' can be complemented by a second
order equation involving only T and q. This equation is obtained upon considering (21)
and (22) as two simultaneous linear equations for V2 T and V2<1>, in the form

(25)

The two uncoupled second-order equations for 'I' and T are complemented by one
fourth-order equation for w, which follows upon introduction of (24) into (21) :

(26)

With (23), (25) and (26) it remains to express v and the various <p, Q, Sand Min
terms of '1', Tand w.

An introduction of (24) into (l9a, b) gives as expressions for Qx and Qy:

Qx = _[DV2W+(DBQ-Aq)q+(DBR-AT)11.x+~(D-Dv)'I'.y, (27a)

Qy = -[DV2w+(DBQ-Aq)Q+(DBR-AT)11,y-HD-Dv)'I',x' (27b)

Equations (13), (20) and (24) give as expression for v:

(28)

With this we have Sx and Sy in terms of w, '1', T and q upon rewriting (12) in the form:

(29)

The introduction of (29) into (11) then gives as expressions for <Px and <Py :

(30a)

(30b)

Finally, it is apparent that the introduction of (30a, b) into (9) and (10), in conjunction
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with (27a, b) and (28), will result in expressions for M w M yy and M xy in terms of w, '1', T
andq.

CONSTITUTIVE COEFFICIENTS FOR TRANSVERSELY HOMOGENEOUS PLATES

In order to clarify the nature ofthe foregoing we list below the values ofthe constitutive
coefficients in (15)-(18) for the case of z-independent E, v, v., Ez andG, as well as the
values of the coefficients in (23) and (25) which are significant for our conclusions:

(31)

(32)

(33)

From (31) and (32) follows for the coefficient in (23) :

From (31)-(33) follows for the first coefficient in (25):

CT A~ _~(1_1071-33V/I07 2)GC2
= 2

Bs + DBs -11 70 I-v Vz E
z

-c",

(34)

(35)

We conclude from the form of (34) and (35) that '1', as well as the solution of the
homogeneous equation for T are boundary layer portions of the solution of the given
eighth-order problem for cases in which c. and C" are small compared to the representative
linear dimension in the plane of the plate. The boundary layer corresponding to (34)
represents the effect of transverse shear deformabilitY,and the width of the layer is nearly
the same as the corresponding width JE/5(1 +v)Gc associated with the theory of the sixth
order.

The boundary layer corresponding to (35) is a consequence of the step from sixth order
to eighth order. The width of both layers is of the same order as the thickness 2c of the plate,
with significant modifications which represent the consequences of the difference between
isotropy and transvere isotropy.

With 'I' being entirely a boundary layer solution contribution, we have that Tinvolves
both a boundary layer contribution re and interior solution contribution T, with the latter
being absent if there are no surface loads q.

An introduction of Tinto (26) shows next that in the eighth-order theory the deflection
function w will have an edge zone solution contribution we in addition to the expected
interior solution contribution Wi, corresponding to the effect ofq and Tin (26). The solution
part we follows upon introducing re in terms ofV2 re in accordance with (25) into (26), in
the form

e (AT )(CT A~)w = --BR -+-- re
D Bs DBs

- 1 c ( 1+v ) ( 107- 33v 2)
= 385 E

z
I-vzG jEE. 1- 70-7Ov Vz reo (36)
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As far as the solution part Wi is concerned we observe that (26) implies that, except for
terms of relative order c21a2 where ais a characteristic length for significant changes of q, Wi

again comes out to be the solution of Kirchhoff's equation DV4 w = q.

ON THE DETERMINATION OF FIRST-ORDER TRANSVERSE STRESS CORRECTIONS

Knowing the existence ofjirst-order transverse shear stress corrections for the fourth­
order interior problem as established by Goldenveizer through a study of the three-dimen­
sional problem and, according to Reissner (1985), as implied by the two-dimensional sixth­
order problem, it is of interest also to consider this effect in the context of the present
eighth-order theory.

With q = 0, we consider a semi-infinite plate - 00 ~ x ~ 0 with loading conditions

(37)

for x = O. The load system is to be self equilibrating, so that Qx = Sx = M xx = Mxy = 0 for
x = - 00. Furthermore, we stipulate a characteristic length a for edgewise rates of change
of the right side terms in (37) such that a » c.

With w = wi+w· we have from (27a) and (26) after a remarkable cancellation of T
and w· as expression for Qx in (37), except for terms of relative order c21a2

:

(38)

With this we have from (29) and (28) as expression for Sx in (37)

(39)

To obtain the corresponding formulae for M xx and M xy we first obtain ¢x and ¢y- The
introduction of Qx and Sx from (38) and (39) with the corresponding formulae for Qy and
Sy, and the introduction of v from (29) into (30a, b) gives, except for term of relative order
c21a2

:

(40)

with ¢y correspondingly.
We next observe that as a consequence of our stipulation concerning edgewise rates

ofchanges and of the form of the differential equations for'll and T these may here be used
in the abbreviated form

DCT+A;'
DB

s
T.xx = T. (41)

From (41) it follows that, except for terms of relative order c21a 2
,

~
T,x=..J~T. (42)

The introduction of (42) and (40) into (9) then gives, after a remarkable cancellation
of all T-terms, as expression for M xx
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where M~x = -Dw:xx-D,w:yy ,.
Correspondingly, from (10)
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(43)

DCT+A~ T
DBs ,Y'

(44)

where M~y = -(D-D,)w:xy .
The introduction of (44), (43), (39) and (38) into (37) leaves a system of four coupled

boundary conditions for the three functions Wi, 'P and T. From this we now deduce a system
of two conditions for Wi by itself, which hold except for terms of relative order c21a2

, while
including terms of relative order cia.

A comparison of the influence of the various terms in the four relevant expressions
leads to the initial conclusion thatthe T,y-term in (44) is ofrelative order c21a2

• The omission
of this term makes possible a contraction of the two conditions for Qx and M xy in (37) into
the contracted Kirchhoff condition

(45)

A second condition for Wi follows upon introducing (47), without the T,y-term, into
the M xx condition in (40), in the form

(46)

with the Mxy-term in (49) representing a modification of relative order cia of the cor­
responding Kirchhoff condition.

Having determined Wi on the basis of (48) and (49) we subsequently determine 'P and
T through the conditions

(47)

(48)

for x = O.
Two salient consequences of the foregoing may be stated as follows:

(1) Conditions (45) and (46) for the interior solution contribution in the eighth-order
formulation are the same as the corresponding conditions in the sixth-order formulation,
except for a (numerically small) change of the term BQ into a term BQ - BMBs . There is,
to this order of magnitude, no influence of transverse normal stress.

(2) The effect of the Sx stipulation in (37) shows, on the basis of (39), that the nature
of the transverse edge shear distribution in accordance with (5) plays a significant role not
only in the edge zone but also in the interior. Physically, the magnitude of this effect involves
a transverse normal stress influence through the occurrence of the parameter vzGljEE..
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APPENDIX

In connection with possible finite element implementations we state below the variational equation cor­
responding to the differential equations (7)-(13), including a fairly general system of edge conditions. With all
differential equations and edge conditions as Euler equations we have M = 0, with

1= f fBD(I/>;., + I/>;,v)+ Dvl/>,A.v" +!(D-D,)(I/>,,, + I/>y.,) 2

+ (1/>,., +1/>,.,v)(Aqq+ ArT) -CqqT- WrT2

-!BQ(Q; +Q,;) - BR(Q,S, +QySy} -!Bs(S; +S;)

+(I/>,+w..)Q,+"· +v..S,+"· -qw-Tv] dxdy

- f IM•• I/>.ds4..+ M I/>,ds'..-+Q.w<J.r.,+S.v<!s;

+(0'. -iP.)M•• ds" + (1/>, -iP.,)M.,w-:" +(w- w)Q. c:ts:. +(v-V)S. ds:']. (49)

In this we have s4>. +4. = s, etc. with s as arc length along the edge of the plate, and with the superscripts referring
to stress or displacement conditions.


